THREE Dimensional Printing.........

3-D printing is a process of making a three-dimensional solid object of virtually any shape from a digital model. 3D printing is achieved using an additive process, where successive layers of material are laid down in different shapes. 3D printing is considered distinct from traditional machining techniques, which mostly rely on the removal of material by methods such as cutting or drilling.A materials printer usually performs 3D printing processes using digital technology. Since the start of the twenty-first century there has been a large growth in the sales of these machines, and their price has dropped substantially.

The technology is used for both prototyping and distributed manufacturing in jewelry, footwear, industrial design, architecture, engineering and construction , automotive, aerospace, dental and medical industries, education, geographic information systems, civil engineering, and many other fields.Future applications for 3D printing might include creating open-source scientific equipment or other science-based applications like reconstructing fossils in paleontology, replicating ancient and priceless artifacts in archaeology, reconstructing bones and body parts in forensic pathology, and reconstructing heavily damaged evidence acquired from crime scene investigations. The technology is even being explored for building construction.

In 2005, academic journals had begun to report on the possible artistic applications of 3D printing technology.By 2007 the mass media followed with an article in the Wall Street Journal and Time Magazine, listing a 3D printed design among their 100 most influential designs of the year. During the 2011 London Design Festival, an installation, curated by Murray Moss and focused on 3D Printing, was held in the Victoria and Albert Museum (the V&A). The installation was called Industrial Revolution 2.0: How the Material World will Newly Materialise.As of 2012, 3D printing technology has been studied by biotechnology firms and academia for possible use in tissue engineering applications in which organs and body parts are built using inkjet techniques. In this process, layers of living cells are deposited onto a gel medium or sugar matrix and slowly built up to form three-dimensional structures including vascular systems.Several terms have been used to refer to this field of research: organ printing, bio-printing, body part printing,and computer-aided tissue engineering, among others.3D printing can produce a personalized hip replacement in one pass, with the ball permanently inside the socket and is available in printing resolutions that don't require polishing.

The use of 3D scanning technologies allows the replication of real objects without the use of moulding techniques that in many cases can be more expensive, more difficult, or too invasive to be performed, particularly for precious or delicate cultural heritage artifacts where direct contact with the molding substances could harm the original object's surface. Objects as ubiquitous as smartphones can be used as 3D scanners: Sculpteo unveiled a mobile app at the 2012 Consumer Electronics Show that allows a 3D file to be generated directly via smartphone.

0 comments:

Post a Comment